首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Finite-element methods for active contour models and balloons for 2-D and 3-D images
【24h】

Finite-element methods for active contour models and balloons for 2-D and 3-D images

机译:活动轮廓模型的有限元方法和2D和3D图像的气球

获取原文
获取原文并翻译 | 示例

摘要

The use of energy-minimizing curves, known as "snakes" to extract features of interest in images has been introduced by Kass, Witkin and Terzopoulos (1987). A balloon model was introduced by Cohen (1991) as a way to generalize and solve some of the problems encountered with the original method. A 3-D generalization of the balloon model as a 3-D deformable surface, which evolves in 3-D images, is presented. It is deformed under the action of internal and external forces attracting the surface toward detected edgels by means of an attraction potential. We also show properties of energy-minimizing surfaces concerning their relationship with 3-D edge points. To solve the minimization problem for a surface, two simplified approaches are shown first, defining a 3-D surface as a series of 2-D planar curves. Then, after comparing finite-element method and finite-difference method in the 2-D problem, we solve the 3-D model using the finite-element method yielding greater stability and faster convergence. This model is applied for segmenting magnetic resonance images.
机译:Kass,Witkin和Terzopoulos(1987)引入了使用能量最小化曲线(称为“蛇形”)来提取图像中感兴趣的特征的方法。 Cohen(1991)引入了气球模型,以概括和解决原始方法遇到的一些问题。提出了将气球模型作为3-D变形表面(在3-D图像中演化)的3-D概括。它在内外力的作用下通过吸引势将表面吸引到检测到的边缘,从而变形。我们还显示了与3D边缘点有关的能量最小化曲面的属性。为了解决曲面的最小化问题,首先显示了两种简化方法,将3-D曲面定义为一系列2-D平面曲线。然后,在比较二维问题中的有限元方法和有限差分方法之后,我们使用有限元方法求解3-D模型,从而产生更大的稳定性和更快的收敛性。该模型用于分割磁共振图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号