【24h】

Depth and image recovery using a MRF model

机译:使用MRF模型进行深度和图像恢复

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with the problem of depth recovery and image restoration from sparse and noisy image data. The image is modeled as a Markov random field and a new energy function is developed to effectively detect discontinuities in highly sparse and noisy images. The model provides an alternative to the use of a line process. Interpolation over missing data sites is first done using local characteristics to obtain initial estimates and then simulated annealing is used to compute the maximum a posteriori (MAP) estimate. A threshold on energy reduction per iteration is used to speed up simulated annealing by avoiding computation that contributes little to the energy minimization. Moreover, a minor modification of the posterior energy function gives improved results for random as well as structured sparsing problems. Results of simulations carried out on real range and intensity images along with details of the simulations are presented.
机译:本文讨论了从稀疏和嘈杂的图像数据进行深度恢复和图像恢复的问题。该图像被建模为马尔可夫随机场,并且开发了新的能量函数以有效检测高度稀疏和嘈杂图像中的不连续性。该模型为使用生产线流程提供了替代方法。首先使用局部特征对丢失的数据站点进行插值以获得初始估计,然后使用模拟退火来计算最大后验(MAP)估计。通过避免对能量最小化贡献很小的计算,可以使用每次迭代的能量减少阈值来加速模拟退火。此外,对后部能量函数的较小修改为随机以及结构化稀疏问题提供了改进的结果。介绍了在真实距离和强度图像上执行的模拟结果以及模拟的详细信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号