首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >A tight upper bound on the Bayesian probability of error
【24h】

A tight upper bound on the Bayesian probability of error

机译:贝叶斯误差概率的严格上限

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a new upper bound on the minimum probability of error of Bayesian decision systems for statistical pattern recognition. This new bound is continuous everywhere and is shown to be tighter than several existing bounds such as the Bhattacharyya and the Bayesian bounds. Numerical results are also presented.
机译:在本文中,我们提出了用于统计模式识别的贝叶斯决策系统的最小错误概率的新上限。这个新边界在任何地方都是连续的,并且显示出比几个现有边界(例如Bhattacharyya和贝叶斯边界)更紧密。数值结果也被提出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号