首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Part II: 3-D object recognition and shape estimation from image contours using B-splines, shape invariant matching, and neural network
【24h】

Part II: 3-D object recognition and shape estimation from image contours using B-splines, shape invariant matching, and neural network

机译:第二部分:使用B样条,形状不变匹配和神经网络从图像轮廓进行3-D对象识别和形状估计

获取原文
获取原文并翻译 | 示例

摘要

For pt. I, see ibid., p.1-12 (1994). This paper is the second part of a 3-D object recognition and shape estimation system that identifies particular objects by recognizing the special markings (text, symbols, drawings, etc.) on their surfaces. The shape of the object is identified from the image curves using B-spline curve modeling as described in Part I, as well as a binocular stereo imaging system. This is achieved by first estimating the 3-D control points from the corresponding curves in each image in the stereo imaging system. From the 3-D control points, the 3-D object curves are generated, and these are subsequently used for estimating the 3-D surface parameters. A Bayesian framework is used for classifying the image into one of c possible surfaces based on the extracted 3-D object curves. This is complemented by a neural network (NN) that recognizes the surface as a particular object (e.g., a Pepsi can versus a peanut butter jar), by reading the text/markings on the surface. To reduce the amount of training the NN has to undergo for recognition, the object curves are "unwarped" into planar curves before the matching process. This eliminates the need for templates that are surface shape dependent and results in a planar curve that might be a rotated, translated, and scaled version of the template. Hence, for the matching process we need to use measures that are invariant to these transformations. One such measure is the Fourier descriptors (FD) derived from the control points associated with the unwarped parent curves. The approach is tried on a variety of images of real objects and appears to hold great promise.
机译:对于pt。我见同上,第1-12页(1994)。本文是3-D对象识别和形状估计系统的第二部分,该系统通过识别其表面上的特殊标记(文本,符号,图形等)来识别特定对象。使用第I部分中所述的B样条曲线建模以及双目立体成像系统从图像曲线中识别出对象的形状。这是通过首先从立体成像系统中每个图像中的相应曲线估计3-D控制点来实现的。从3-D控制点生成3-D对象曲线,然后将这些曲线用于估计3-D表面参数。贝叶斯框架用于基于提取的3D对象曲线将图像分类为c个可能的表面之一。这是由神经网络(NN)补充的,它通过读取表面上的文本/标记将表面识别为特定对象(例如,百事可乐罐与花生酱罐)。为了减少NN必须进行的识别训练量,在匹配过程之前将对象曲线“扭曲”为平面曲线。这消除了对依赖于表面形状的模板的需要,并且不需要平面曲线,该平面曲线可能是模板的旋转,平移和缩放版本。因此,对于匹配过程,我们需要使用与这些转换不变的度量。一种这样的度量是从与未弯曲的父曲线相关联的控制点派生的傅立叶描述符(FD)。该方法已在各种真实物体的图像上进行了尝试,似乎具有广阔的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号