首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >The application of semantic classification trees to natural language understanding
【24h】

The application of semantic classification trees to natural language understanding

机译:语义分类树在自然语言理解中的应用

获取原文
获取原文并翻译 | 示例

摘要

This article describes a new method for building a natural language understanding (NLU) system, in which the system's rules are learnt automatically from training data. The method has been applied to design of a speech understanding (SU) system. Designers of such systems rely increasingly on robust matchers to perform the task of extracting meaning from one or several word sequence hypotheses generated by a speech recognizer. We describe a new data structure, the semantic classification tree (SCT), that learns semantic rules from training data and can be a building block for robust matchers for NLU tasks. By reducing the need for handcoding and debugging a large number of rules, this approach facilitates rapid construction of an NLU system. In the case of an SU system, the rules learned by an SCT are highly resistant to errors by the speaker or by the speech recognizer because they depend on a small number of words in each utterance. Our work shows that semantic rules can be learned automatically from training data, yielding successful NLU for a realistic application.
机译:本文介绍了一种用于构建自然语言理解(NLU)系统的新方法,其中可以从训练数据中自动学习系统规则。该方法已经被应用于语音理解(SU)系统的设计。这种系统的设计者越来越依赖鲁棒的匹配器来执行从语音识别器生成的一个或几个单词序列假设中提取含义的任务。我们描述了一种新的数据结构,即语义分类树(SCT),该结构从训练数据中学习语义规则,并且可以作为NLU任务的鲁棒匹配器的构建块。通过减少手工编码和调试大量规则的需要,此方法有助于快速构建NLU系统。在SU系统的情况下,由SCT学习的规则对说话人或语音识别器的错误具有很高的抵抗力,因为它们依赖于每个发声中的少量单词。我们的工作表明,可以从训练数据中自动学习语义规则,从而为实际应用成功生成NLU。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号