首页> 外文期刊>Computer speech and language >Semantic vector learning for natural language understanding
【24h】

Semantic vector learning for natural language understanding

机译:自然语言理解的语义矢量学习

获取原文
获取原文并翻译 | 示例

摘要

Natural language understanding (NLU) is a core technology for implementing natural interfaces and has received much attention in recent years. While learning embedding models has yielded fruitful results in several NLP subfields, most notably Word2-Vec, embedding correspondence has relatively not been well explored especially in the context of NLU, a task that typically extracts structured semantic knowledge from a text. A NLU embedding model can facilitate analyzing and understanding relationships between unstructured texts and their corresponding structured semantic knowledge, essential for both researchers and practitioners of NLU. Toward this end, we propose a framework that learns to embed semantic correspondence between text and its extracted semantic knowledge, called semantic frame. One key contributed technique is semantic frame reconstruction used to derive a one-to-one mapping between embedded vectors and their corresponding semantic frames. Embedding into semantically meaningful vectors and computing their distances in vector space provides a simple, but effective way to measure semantic similarities. With the proposed framework, we demonstrate three key areas where the embedding model can be effective: visualization, distance based semantic search, similarity-based intent classification and re-ranking. (C) 2019 Elsevier Ltd. All rights reserved.
机译:自然语言理解(NLU)是实现自然界面的核心技术,近年来受到了很多关注。虽然学习嵌入模型在几个NLP子场中产生了富有成效的结果,但最符合字的字数2-VEC,嵌入对应尤其在NLU的上下文中探讨了,这是一种通常从文本中提取结构化语义知识的任务。 NLU嵌入式模型可以促进分析和理解非结构化文本与其相应的结构化语义知识之间的关系,对NLU的研究人员和从业者至关重要。为此,我们提出了一个框架,该框架学会在文本和提取语义知识之间嵌入语义对应,称为语义帧。一个关键贡献技术是语义帧重建,用于导出嵌入向量和它们对应的语义帧之间的一对一映射。将其嵌入语义有意义的向量并计算矢量空间的距离提供了一种测量语义相似性的简单但有效的方法。通过提出的框架,我们演示了嵌入模型可以有效的三个关键领域:可视化,基于距离的语义搜索,基于距离的语义搜索,基于相似的意图分类和重新排名。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号