首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Eigenfaces vs. Fisherfaces: recognition using class specific linear projection
【24h】

Eigenfaces vs. Fisherfaces: recognition using class specific linear projection

机译:特征脸与渔人脸:使用类特定的线性投影进行识别

获取原文
获取原文并翻译 | 示例

摘要

We develop a face recognition algorithm which is insensitive to large variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a high-dimensional space. We take advantage of the observation that the images of a particular face, under varying illumination but fixed pose, lie in a 3D linear subspace of the high dimensional image space-if the face is a Lambertian surface without shadowing. However, since faces are not truly Lambertian surfaces and do indeed produce self-shadowing, images will deviate from this linear subspace. Rather than explicitly modeling this deviation, we linearly project the image into a subspace in a manner which discounts those regions of the face with large deviation. Our projection method is based on Fisher's linear discriminant and produces well separated classes in a low-dimensional subspace, even under severe variation in lighting and facial expressions. The eigenface technique, another method based on linearly projecting the image space to a low dimensional subspace, has similar computational requirements. Yet, extensive experimental results demonstrate that the proposed "Fisherface" method has error rates that are lower than those of the eigenface technique for tests on the Harvard and Yale face databases.
机译:我们开发了一种面部识别算法,该算法对光照方向和面部表情的大变化不敏感。采用模式分类方法,我们将图像中的每个像素视为高维空间中的坐标。我们利用以下观察的优势:如果面部是不带阴影的朗伯曲面,则在变化的光照但固定的姿势下,特定面部的图像位于高维图像空间的3D线性子空间中。但是,由于面不是真正的朗伯曲面,并且确实会产生自阴影,因此图像将偏离此线性子空间。与其显式地建模该偏差,我们将图像线性投影到子空间中的方式是将具有较大偏差的面部区域打折。我们的投影方法基于费舍尔线性判别式,即使在光线和面部表情严重变化的情况下,也可以在低维子空间中产生分类良好的类。本征面技术是将图像空间线性投影到低维子空间的另一种方法,具有类似的计算要求。然而,大量的实验结果表明,提出的“ Fisherface”方法的错误率低于在哈佛和耶鲁人脸数据库上进行测试的本征脸技术的错误率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号