首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >A multichannel approach to fingerprint classification
【24h】

A multichannel approach to fingerprint classification

机译:多通道指纹分类方法

获取原文
获取原文并翻译 | 示例

摘要

Fingerprint classification provides an important indexing mechanism in a fingerprint database. An accurate and consistent classification can greatly reduce fingerprint matching time for a large database. We present a fingerprint classification algorithm which is able to achieve an accuracy better than previously reported in the literature. We classify fingerprints into five categories: whorl, right loop, left loop, arch, and tented arch. The algorithm uses a novel representation (FingerCode) and is based on a two-stage classifier to make a classification. It has been tested on 4000 images in the NIST-4 database. For the five-class problem, a classification accuracy of 90 percent is achieved (with a 1.8 percent rejection during the feature extraction phase). For the four-class problem (arch and tented arch combined into one class), we are able to achieve a classification accuracy of 94.8 percent (with 1.8 percent rejection). By incorporating a reject option at the classifier, the classification accuracy can be increased to 96 percent for the five-class classification task, and to 97.8 percent for the four-class classification task after a total of 32.5 percent of the images are rejected.
机译:指纹分类在指纹数据库中提供了重要的索引机制。准确一致的分类可以大大减少大型数据库的指纹匹配时间。我们提出了一种指纹分类算法,该算法能够实现比以前文献中更好的准确性。我们将指纹分为五类:螺纹,右旋,左旋,拱形和拱形。该算法使用一种新颖的表示形式(FingerCode),并基于两阶段分类器进行分类。已在NIST-4数据库中的4000张图像上进行了测试。对于五类问题,实现了90%的分类精度(在特征提取阶段的拒绝率为1.8%)。对于四类问题(拱和拱形拱合为一类),我们能够实现94.8%的分类精度(拒绝率为1.8%)。通过在分类器上合并拒绝选项,在总共拒绝了32.5%的图像之后,五类分类任务的分类精度可以提高到96%,四类分类任务的分类精度可以提高到97.8%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号