首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Fitting optimal piecewise linear functions using genetic algorithms
【24h】

Fitting optimal piecewise linear functions using genetic algorithms

机译:使用遗传算法拟合最佳分段线性函数

获取原文
获取原文并翻译 | 示例

摘要

Constructing a model for data in R/sup 2/ is a common problem in many scientific fields, including pattern recognition, computer vision, and applied mathematics. Often little is known about the process which generated the data or its statistical properties. For example, in fitting a piecewise linear model, the number of pieces, as well as the knot locations, may be unknown. Hence, the method used to build the statistical model should have few assumptions, yet, still provide a model that is optimal in some sense. Such methods can be designed through the use of genetic algorithms. We examine the use of genetic algorithms to fit piecewise linear functions to data in R/sup 2/. The number of pieces, the location of the knots, and the underlying distribution of the data are assumed to be unknown. We discuss existing methods which attempt to solve this problem and introduce a new method which employs genetic algorithms to optimize the number and location of the pieces. Experimental results are presented which demonstrate the performance of our method and compare it to the performance of several existing methods, We conclude that our method represents a valuable tool for fitting both robust and nonrobust piecewise linear functions.
机译:在R / sup 2 /中为数据建立模型是许多科学领域的常见问题,包括模式识别,计算机视觉和应用数学。人们对生成数据或其统计属性的过程了解甚少。例如,在拟合分段线性模型时,可能不知道零件的数量以及结的位置。因此,用于构建统计模型的方法应具有少量假设,但仍提供某种意义上最佳的模型。可以通过使用遗传算法来设计此类方法。我们研究了使用遗传算法将分段线性函数拟合到R / sup 2 /中的数据。碎片的数目,结的位置以及数据的基本分布被假定为未知。我们讨论了试图解决该问题的现有方法,并介绍了一种采用遗传算法来优化零件数量和位置的新方法。实验结果表明,该方法的性能并将其与几种现有方法的性能进行了比较。我们得出的结论是,该方法代表了一种既适合鲁棒性函数也适用于非鲁棒性分段线性函数的有价值的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号