首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >MIR: an approach to robust clustering-application to range image segmentation
【24h】

MIR: an approach to robust clustering-application to range image segmentation

机译:MIR:一种强大的聚类方法,适用于范围图像分割

获取原文
获取原文并翻译 | 示例

摘要

This paper describes an unsupervised region merging technique based on a novel robust statistical test. The merging decision is derived from the mutual inlier ratio (MIR) of adjacent regions. This ratio is computed using robust regression techniques and a novel method to estimate the robust scale of the Gaussian distribution. A discrimination value to recognize identical Gaussian distributions with the MIR is derived theoretically as a function of the sizes of the compared sets. The presented method to test distributions is compared with the established Kolmogorov-Smirnov test and implemented into a segmentation algorithm for planar range images. The iterative region growing technique is evaluated using an established framework for range image segmentation comparison involving 60 real range images. The evaluation incorporates a comparison with four state-of-the-art algorithms and gives an experimental demonstration of the need for robust methods capable of handling noisy data in real applications.
机译:本文介绍了一种基于新型鲁棒统计检验的无监督区域合并技术。合并决策是从相邻区域的相互内在比率(MIR)得出的。使用鲁棒回归技术和一种新颖的方法来估算该比率,以估算高斯分布的鲁棒尺度。理论上,根据比较集的大小,得出了识别具有MIR的相同高斯分布的判别值。将所提出的测试分布的方法与已建立的Kolmogorov-Smirnov测试进行比较,并将其实现为平面范围图像的分割算法。使用已建立的框架对涉及60个真实范围图像的范围图像分割比较,评估了迭代区域增长技术。该评估结合了四种最新算法的比较,并通过实验证明了需要能够在实际应用中处理嘈杂数据的健壮方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号