首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Hybrid genetic optimization and statistical model based approach for the classification of shadow shapes in sonar imagery
【24h】

Hybrid genetic optimization and statistical model based approach for the classification of shadow shapes in sonar imagery

机译:基于混合遗传优化和统计模型的声纳图像阴影形状分类方法

获取原文
获取原文并翻译 | 示例

摘要

We present an original statistical classification method using a deformable template model to separate natural objects from man-made objects in an image provided by a high resolution sonar. A prior knowledge of the manufactured object shadow shape is captured by a prototype template, along with a set of admissible linear transformations, to take into account the shape variability. Then, the classification problem is defined as a two-step process: 1) the detection problem of a region of interest in the input image is stated as the minimization of a cost function; and 2) the value of this function at convergence allows one to determine whether the desired object is present or not in the sonar image. The energy minimization problem is tackled using relaxation techniques. In this context, we compare the results obtained with a deterministic relaxation technique and two stochastic relaxation methods: simulated annealing and a hybrid genetic algorithm. This latter method has been successfully tested on real and synthetic sonar images, yielding very promising results.
机译:我们提出了一种原始的统计分类方法,使用可变形模板模型从高分辨率声纳提供的图像中将自然物体与人造物体分离。原型模板与一组允许的线性变换一起捕获了制造对象阴影形状的先验知识,以考虑形状的可变性。然后,将分类问题定义为两步过程:1)将输入图像中感兴趣区域的检测问题描述为成本函数的最小化; 2)该函数的收敛值允许人们确定声纳图像中是否存在所需的物体。使用松弛技术解决能量最小化问题。在这种情况下,我们比较了确定性松弛技术和两种随机松弛方法获得的结果:模拟退火和混合遗传算法。后一种方法已经在真实和合成声纳图像上成功测试,产生了非常有希望的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号