首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Discriminant waveletfaces and nearest feature classifiers for face recognition
【24h】

Discriminant waveletfaces and nearest feature classifiers for face recognition

机译:识别小波脸和最近的特征分类器

获取原文
获取原文并翻译 | 示例

摘要

Feature extraction, discriminant analysis, and classification rules are three crucial issues for face recognition. We present hybrid approaches to handle three issues together. For feature extraction, we apply the multiresolution wavelet transform to extract the waveletface. We also perform the linear discriminant analysis on waveletfaces to reinforce discriminant power. During classification, the nearest feature plane (NFP) and nearest feature space (NFS) classifiers are explored for robust decisions in presence of wide facial variations. Their relationships to conventional nearest neighbor and nearest feature line classifiers are demonstrated. In the experiments, the discriminant waveletface incorporated with the NFS classifier achieves the best face recognition performance.
机译:特征提取,判别分析和分类规则是面部识别的三个关键问题。我们提出了混合方法来一起处理三个问题。对于特征提取,我们应用多分辨率小波变换来提取小波面。我们还对小波面执行线性判别分析以增强判别能力。在分类过程中,将探索最近的特征平面(NFP)和最近的特征空间(NFS)分类器,以在存在较大面部变化的情况下做出可靠的决策。证明了它们与常规最近邻和最近要素线分类器的关系。在实验中,结合NFS分类器的判别小波脸实现了最佳的人脸识别性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号