首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Feature space trajectory methods for active computer vision
【24h】

Feature space trajectory methods for active computer vision

机译:主动计算机视觉的特征空间轨迹方法

获取原文
获取原文并翻译 | 示例

摘要

We advance new active object recognition algorithms that classify rigid objects and estimate their pose from intensity images. Our algorithms automatically detect if the class or pose of an object is ambiguous in a given image, reposition the sensor as needed, and incorporate data from multiple object views in determining the final object class and pose estimate. A probabilistic feature space trajectory (FST) in a global eigenspace is used to represent 3D distorted views of an object and to estimate the class and pose of an input object. Confidence measures for the class and pose estimates, derived using the probabilistic FST object representation, determine when additional observations are required as well as where the sensor should be positioned to provide the most useful information. We demonstrate the ability to use FSTs constructed from images rendered from computer-aided design models to recognize real objects in real images and present test results for a set of metal machined parts.
机译:我们提出了新的主动物体识别算法,该算法可以对刚性物体进行分类,并根据强度图像估算其姿态。我们的算法会自动检测给定图像中对象的类别或姿势是否不明确,根据需要重新定位传感器,并在确定最终对象类别和姿势估计时合并来自多个对象视图的数据。全局特征空间中的概率特征空间轨迹(FST)用于表示对象的3D扭曲视图并估计输入对象的类和姿势。使用概率FST对象表示法得出的类和姿势估计值的置信度,可以确定何时需要进行其他观察以及应该在何处放置传感器以提供最有用的信息。我们展示了使用从计算机辅助设计模型渲染的图像构造的FST识别真实图像中的真实对象并呈现一组金属加工零件的测试结果的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号