首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Normalized Kemeny and Snell distance: a novel metric for quantitative evaluation of rank-order similarity of images
【24h】

Normalized Kemeny and Snell distance: a novel metric for quantitative evaluation of rank-order similarity of images

机译:归一化的Kemeny和Snell距离:一种用于量化图像等级相似度的新颖度量

获取原文
获取原文并翻译 | 示例

摘要

There are needs for evaluating rank order-based similarity between images. Region importance maps from image understanding algorithms or human observer studies are ordered rankings of the pixel locations. We address three problems with Kemeny and Snell's distance (d/sub KS/), an existing measure from ordinal ranking theory, when applied to images: its high-computational cost, its bias in favor of images with sparse histograms, and its image-size dependent range of values. We present a novel computationally efficient algorithm for computing d/sub KS/ between two images and we derive a normalized form d/sub KS/ with no bias whose range is independent of image size. For evaluating similarity between images that can be considered as ordered rankings of pixels, d/sub KS/ is subjectively superior to cross correlation.
机译:需要评估图像之间基于等级顺序的相似性。来自图像理解算法或人类观察者研究的区域重要性图是像素位置的有序排序。我们解决了Kemeny和Snell距离(d / sub KS /)的三个问题,这是有序排序理论在应用于图像时的一种现有量度:计算成本高,偏向于使用稀疏直方图的图像以及图像大小取决于值的范围。我们提出了一种新颖的高效计算算法,用于计算两幅图像之间的d / sub KS /,并且我们得出了一个标准化的形式d / sub KS /,其偏差与图像大小无关。为了评估可以被视为像素的有序排列的图像之间的相似性,d / sub KS /在主观上优于互相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号