首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Expandable Bayesian networks for 3D object description from multiple views and multiple mode inputs
【24h】

Expandable Bayesian networks for 3D object description from multiple views and multiple mode inputs

机译:用于从多个视图和多个模式输入进行3D对象描述的可扩展贝叶斯网络

获取原文
获取原文并翻译 | 示例

摘要

Computing 3D object descriptions from images is an important goal of computer vision. A key problem here is the evaluation of a hypothesis based on evidence that is uncertain. There have been few efforts on applying formal reasoning methods to this problem. In multiview and multimode object description problems, reasoning is required on evidence features extracted from multiple images and nonintensity data. One challenge here is that the number of the evidence features varies at runtime because the number of images being used is not fixed and some modalities may not always be available. We introduce an augmented Bayesian network, the expandable Bayesian network (EBN), which instantiates its structure at runtime according to the structure of input. We introduce the use of hidden variables to handle correlation of evidence features across images. We show an application of an EBN to a multiview building description system. Experimental results show that the proposed method gives significant and consistent performance improvement to others.
机译:从图像计算3D对象描述是计算机视觉的重要目标。此处的关键问题是基于不确定的证据对假设进行评估。在将正式的推理方法应用于此问题方面的努力很少。在多视图和多模式对象描述问题中,需要对从多个图像和非强度数据中提取的证据特征进行推理。这里的一个挑战是,证据特征的数量在运行时会发生变化,因为所使用的图像数量不是固定的,并且某些模式可能并不总是可用。我们引入了增强贝叶斯网络,即可扩展贝叶斯网络(EBN),它会在运行时根据输入的结构实例化其结构。我们介绍了使用隐藏变量来处理跨图像的证据特征的相关性。我们展示了EBN在多视图建筑物描述系统中的应用。实验结果表明,所提出的方法对其他方法具有显着而一致的性能改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号