首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images
【24h】

Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images

机译:通过基于验证的多阈值探测的自适应局部阈值技术在视网膜图像血管检测中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a general framework of adaptive local thresholding based on a verification-based multithreshold probing scheme. Object hypotheses are generated by binarization using hypothetic thresholds and accepted/rejected by a verification procedure. The application-dependent verification procedure can be designed to fully utilize all relevant informations about the objects of interest. In this sense, our approach is regarded as knowledge-guided adaptive thresholding, in contrast to most algorithms known from the literature. We apply our general framework to detect vessels in retinal images. An experimental evaluation demonstrates superior performance over global thresholding and a vessel detection method recently reported in the literature. Due to its simplicity and general nature, our novel approach is expected to be applicable to a variety of other applications.
机译:在本文中,我们提出了一种基于基于验证的多阈值探测方案的自适应局部阈值确定的通用框架。对象假设是使用假设阈值通过二值化生成的,并由验证过程接受/拒绝。依赖于应用程序的验证过程可以设计为充分利用有关感兴趣对象的所有相关信息。从这个意义上讲,与文献中已知的大多数算法相比,我们的方法被认为是知识指导的自适应阈值。我们应用我们的一般框架来检测视网膜图像中的血管。实验评估表明,其性能优于全局阈值和文献中最近报道的血管检测方法。由于其简单性和一般性,我们的新颖方法有望应用于多种其他应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号