首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Online clustering algorithms for radar emitter classification
【24h】

Online clustering algorithms for radar emitter classification

机译:用于雷达辐射源分类的在线聚类算法

获取原文
获取原文并翻译 | 示例

摘要

Radar emitter classification is a special application of data clustering for classifying unknown radar emitters from received radar pulse samples. The main challenges of this task are the high dimensionality of radar pulse samples, small sample group size, and closely located radar pulse clusters. In this paper, two new online clustering algorithms are developed for radar emitter classification: One is model-based using the minimum description length (MDL) criterion and the other is based on competitive learning. Computational complexity is analyzed for each algorithm and then compared. Simulation results show the superior performance of the model-based algorithm over competitive learning in terms of better classification accuracy, flexibility, and stability.
机译:雷达发射器分类是数据聚类的一种特殊应用,用于从接收到的雷达脉冲样本中对未知雷达发射器进行分类。这项任务的主要挑战是雷达脉冲样本的高维数,较小的样本组大小以及位置紧密的雷达脉冲群。本文针对雷达辐射源分类开发了两种新的在线聚类算法:一种是基于模型的最小描述长度(MDL)标准,另一种是基于竞争性学习的。分析每种算法的计算复杂度,然后进行比较。仿真结果表明,基于模型的算法在竞争性学习方面具有更好的分类准确性,灵活性和稳定性方面的优越性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号