首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
【24h】

Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy

机译:基于最大相关性,最大相关性和最小冗余的互信息标准进行特征选择

获取原文
获取原文并翻译 | 示例

摘要

Feature selection is an important problem for pattern classification systems. We study how to select good features according to the maximal statistical dependency criterion based on mutual information. Because of the difficulty in directly implementing the maximal dependency condition, we first derive an equivalent form, called minimal-redundancy-maximal-relevance criterion (mRMR), for first-order incremental feature selection. Then, we present a two-stage feature selection algorithm by combining mRMR and other more sophisticated feature selectors (e.g., wrappers). This allows us to select a compact set of superior features at very low cost. We perform extensive experimental comparison of our algorithm and other methods using three different classifiers (naive Bayes, support vector machine, and linear discriminate analysis) and four different data sets (handwritten digits, arrhythmia, NCI cancer cell lines, and lymphoma tissues). The results confirm that mRMR leads to promising improvement on feature selection and classification accuracy.
机译:特征选择是模式分类系统的重要问题。我们研究了如何基于互信息基于最大统计依赖准则选择良好的特征。由于直接实现最大依赖条件的困难,我们首先为一阶增量特征选择导出等效形式,称为最小冗余最大相关准则(mRMR)。然后,我们结合mRMR和其他更复杂的特征选择器(例如包装器),提出了一种两阶段的特征选择算法。这使我们能够以非常低的成本选择一组紧凑的高级功能。我们使用三个不同的分类器(朴素贝叶斯,支持向量机和线性判别分析)和四个不同的数据集(手写数字,心律不齐,NCI癌细胞系和淋巴瘤组织)对算法和其他方法进行了广泛的实验比较。结果证实,mRMR带来了特征选择和分类准确性方面的有希望的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号