首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >A probabilistic model of face mapping with local transformations and its application to person recognition
【24h】

A probabilistic model of face mapping with local transformations and its application to person recognition

机译:具有局部变换的人脸映射概率模型及其在人识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new measure of "distance" between faces. This measure involves the estimation of the set of possible transformations between face images of the same person. The global transformation, which is assumed to be too complex for direct modeling, is approximated by a patchwork of local transformations, under a constraint imposing consistency between neighboring local transformations. The proposed system of local transformations and neighboring constraints is embedded within the probabilistic framework of a two-dimensional hidden Markov model. More specifically, we model two types of intraclass variabilities involving variations in facial expressions and illumination, respectively. The performance of the resulting method is assessed on a large data set consisting of four face databases. In particular, it is shown to outperform a leading approach to face recognition, namely, the Bayesian intra/extrapersonal classifier.
机译:本文提出了一种新的测量人脸之间“距离”的方法。该度量涉及对同一个人的面部图像之间的可能变换的集合的估计。全局转换(对于直接建模而言过于复杂)被认为是局部变形的拼凑法,其约束条件是相邻局部转换之间具有一致性。所提出的局部变换和邻近约束的系统被嵌入二维隐马尔可夫模型的概率框架内。更具体地说,我们对两种类型的类内差异建模,分别涉及面部表情和光照的差异。在由四个面部数据库组成的大型数据集上评估了所得方法的性能。特别是,它表现出优于人脸识别的领先方法,即贝叶斯内/外人格分类器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号