首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Structural semantic interconnections: a knowledge-based approach to word sense disambiguation
【24h】

Structural semantic interconnections: a knowledge-based approach to word sense disambiguation

机译:结构性语义互连:一种基于知识的词义消歧方法

获取原文
获取原文并翻译 | 示例

摘要

Word sense disambiguation (WSD) is traditionally considered an AI-hard problem. A break-through in this field would have a significant impact on many relevant Web-based applications, such as Web information retrieval, improved access to Web services, information extraction, etc. Early approaches to WSD, based on knowledge representation techniques, have been replaced in the past few years by more robust machine learning and statistical techniques. The results of recent comparative evaluations of WSD systems, however, show that these methods have inherent limitations. On the other hand, the increasing availability of large-scale, rich lexical knowledge resources seems to provide new challenges to knowledge-based approaches. In this paper, we present a method, called structural semantic interconnections (SSI), which creates structural specifications of the possible senses for each word in a context and selects the best hypothesis according to a grammar G, describing relations between sense specifications. Sense specifications are created from several available lexical resources that we integrated in part manually, in part with the help of automatic procedures. The SSI algorithm has been applied to different semantic disambiguation problems, like automatic ontology population, disambiguation of sentences in generic texts, disambiguation of words in glossary definitions. Evaluation experiments have been performed on specific knowledge domains (e.g., tourism, computer networks, enterprise interoperability), as well as on standard disambiguation test sets.
机译:传统上将词义消歧(WSD)视为AI难题。在该领域的突破将对许多相关的基于Web的应用程序产生重大影响,例如Web信息检索,对Web服务的改进访问,信息提取等。基于知识表示技术的WSD早期方法已经存在。过去几年被更强大的机器学习和统计技术所取代。然而,最近对WSD系统进行比较评估的结果表明,这些方法具有固有的局限性。另一方面,大规模,丰富的词汇知识资源的可用性日益增加,这似乎给基于知识的方法提出了新的挑战。在本文中,我们提出了一种称为结构语义互连(SSI)的方法,该方法为上下文中每个单词创建可能意义的结构规范,并根据语法G选择最佳假设,以描述意义规范之间的关系。感知规范是根据几种可用的词汇资源创建的,这些词汇我们部分地通过手动方式进行集成,部分地借助自动过程进行集成。 SSI算法已应用于不同的语义消歧问题,例如自动本体填充,通用文本中句子的消歧,词汇表定义中单词的消歧。已经在特定知识领域(例如旅游,计算机网络,企业互操作性)以及标准消歧测试集上进行了评估实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号