首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >A parallel-line detection algorithm based on HMM decoding
【24h】

A parallel-line detection algorithm based on HMM decoding

机译:基于HMM解码的并行线检测算法

获取原文
获取原文并翻译 | 示例

摘要

The detection of groups of parallel lines is important in applications such as form processing and text (handwriting) extraction from rule lined paper. These tasks can be very challenging in degraded documents where the lines are severely broken. In this paper, we propose a novel model-based method which incorporates high-level context to detect these lines. After preprocessing (such as skew correction and text filtering), we use trained hidden Markov models (HMM) to locate the optimal positions of all lines simultaneously on the horizontal or vertical projection profiles, based on the Viterbi decoding. The algorithm is trainable so it can be easily adapted to different application scenarios. The experiments conducted on known form processing and rule line detection show our method is robust, and achieves better results than other widely used line detection methods.
机译:在诸如表格处理和从标线纸中提取文本(手写)的应用中,检测平行线组非常重要。在行严重中断的降级文档中,这些任务可能会非常具有挑战性。在本文中,我们提出了一种新颖的基于模型的方法,该方法结合了高级上下文来检测这些行。经过预处理(例如偏斜校正和文本过滤)后,基于维特比解码,我们使用经过训练的隐马尔可夫模型(HMM)在水平或垂直投影轮廓上同时定位所有线条的最佳位置。该算法是可训练的,因此可以轻松地适应不同的应用场景。在已知的表格处理和规则线检测上进行的实验表明,与其他广泛使用的线检测方法相比,我们的方法是可靠的,并且可以获得更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号