首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Dynamical statistical shape priors for level set-based tracking
【24h】

Dynamical statistical shape priors for level set-based tracking

机译:基于水平集的跟踪的动态统计形状先验

获取原文
获取原文并翻译 | 示例

摘要

In recent years, researchers have proposed introducing statistical shape knowledge into level set-based segmentation methods in order to cope with insufficient low-level information. While these priors were shown to drastically improve the segmentation of familiar objects, so far the focus has been on statistical shape priors which are static in time. Yet, in the context of tracking deformable objects, it is clear that certain silhouettes (such as those of a walking person) may become more or less likely over time. In this paper, we tackle the challenge of learning dynamical statistical models for implicitly represented shapes. We show how these can be integrated as dynamical shape priors in a Bayesian framework for level set-based image sequence segmentation. We assess the effect of such shape priors "with memory" on the tracking of familiar deformable objects in the presence of noise and occlusion. We show comparisons between dynamical and static shape priors, between models of pure deformation and joint models of deformation and transformation, and we quantitatively evaluate the segmentation accuracy as a function of the noise level and of the camera frame rate. Our experiments demonstrate that level set-based segmentation and tracking can be strongly improved by exploiting the temporal correlations among consecutive silhouettes which characterize deforming shapes.
机译:近年来,研究人员提出将统计形状知识引入基于水平集的分割方法中,以应对不足的低层信息。尽管显示了这些先验可以极大地改善熟悉对象的分割,但是到目前为止,重点一直放在统计形状先验上,而先验统计在时间上是静态的。然而,在跟踪可变形物体的情况下,很明显,某些轮廓(例如步行者的轮廓)可能会随着时间的流逝变得或多或少。在本文中,我们解决了为隐式表示的形状学习动态统计模型的挑战。我们展示了如何在基于水平集的图像序列分割的贝叶斯框架中将它们整合为动态形状先验。我们在噪声和遮挡的存在下,评估这种具有“记忆力”的先验形状对熟悉的可变形物体的跟踪效果。我们展示了动态形状和静态形状先验之间,纯变形模型与变形和变换的联合模型之间的比较,并且定量评估了分割精度与噪声水平和相机帧频的关系。我们的实验表明,通过利用表征变形形状的连续轮廓之间的时间相关性,可以大大改善基于水平集的分割和跟踪。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号