首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >TEXEMS: Texture Exemplars for Defect Detection on Random Textured Surfaces
【24h】

TEXEMS: Texture Exemplars for Defect Detection on Random Textured Surfaces

机译:TEXEMS:用于随机纹理表面缺陷检测的纹理样本

获取原文
获取原文并翻译 | 示例

摘要

We present an approach to detecting and localizing defects in random color textures which requires only a few defect free samples for unsupervised training. It is assumed that each image is generated by a superposition of various-size image patches with added variations at each pixel position. These image patches and their corresponding variances are referred to here as textural exemplars or texems. Mixture models are applied to obtain the texems using multiscale analysis to reduce the computational costs. Novelty detection on color texture surfaces is performed by examining the same-source similarity based on the data likelihood in multiscale, followed by logical processes to combine the defect candidates to localize defects. The proposed method is compared against a Gabor filter bank-based novelty detection method. Also, we compare different texem generalization schemes for defect detection in terms of accuracy and efficiency.
机译:我们提出了一种检测和定位随机颜色纹理中的缺陷的方法,该方法只需要少量无缺陷样本即可进行无监督训练。假设每个图像是由各种大小的图像块的叠加生成的,并且每个像素位置的变化都增加了。这些图像块及其相应的方差在这里称为纹理样本或纹理。应用混合物模型使用多尺度分析来获得纹理,以减少计算成本。通过基于多尺度的数据似然性检查同源相似性,然后通过逻辑过程组合缺陷候选以定位缺陷,来对颜色纹理表面进行新颖性检测。将该方法与基于Gabor滤波器库的新颖性检测方法进行了比较。此外,我们在准确性和效率方面比较了用于缺陷检测的不同texem泛化方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号