首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >From Scores to Face Templates: A Model-Based Approach
【24h】

From Scores to Face Templates: A Model-Based Approach

机译:从分数到人脸模板:一种基于模型的方法

获取原文
获取原文并翻译 | 示例

摘要

Regeneration of templates from match scores has security and privacy implications related to any biometric authentication system. We propose a novel paradigm to reconstruct face templates from match scores using a linear approach. It proceeds by first modeling the behavior of the given face recognition algorithm by an affine transformation. The goal of the modeling is to approximate the distances computed by a face recognition algorithm between two faces by distances between points, representing these faces, in an affine space. Given this space, templates from an independent image set (break-in) are matched only once with the enrolled template of the targeted subject and match scores are recorded. These scores are then used to embed the targeted subject in the approximating affine (non-orthogonal) space. Given the coordinates of the targeted subject in the affine space, the original template of the targeted subject is reconstructed using the inverse of the affine transformation. We demonstrate our ideas using three, fundamentally different, face recognition algorithms: Principal Component Analysis (PCA) with Mahalanobis cosine distance measure, Bayesian intra-extrapersonal classifier (BIC), and a feature-based commercial algorithm. To demonstrate the independence of the break-in set with the gallery set, we select face templates from two different databases: Face Recognition Grand Challenge (FRGC) and Facial Recognition Technology (FERET) Database (FERET). With an operational point set at 1% False Acceptance Rate (FAR) and 99% True Acceptance Rate (TAR) for 1196 enrollments (FERET gallery), we show that at most 600 attempts (score computations) are required to achieve a 73% chance of breaking in as a randomly chosen target subject for the commercial face recognition system. With similar operational set up, we achieve a 72% and 100% chance of breaking in for the Bayesian and PCA based face recognition systems, respectively. With thr-ee di
机译:从匹配分数中重新生成模板具有与任何生物特征认证系统有关的安全性和隐私性。我们提出了一种新颖的范例,可以使用线性方法从匹配分数中重建人脸模板。首先通过仿射变换对给定面部识别算法的行为进行建模。建模的目的是通过仿射空间中代表这些面孔的点之间的距离来近似两个面孔之间的面孔识别算法计算出的距离。在给定的空间下,来自独立图像集(闯入)的模板仅与目标对象的已注册模板进行一次匹配,并记录匹配分数。然后使用这些分数将目标对象嵌入到近似仿射(非正交)空间中。给定目标对象在仿射空间中的坐标,可使用仿射变换的逆来重建目标对象的原始模板。我们使用三种根本不同的人脸识别算法展示了我们的想法:具有Mahalanobis余弦距离测度的主成分分析(PCA),贝叶斯超人内部分类器(BIC)和基于特征的商业算法。为了演示闯入组和画廊组的独立性,我们从两个不同的数据库中选择人脸模板:人脸识别大挑战(FRGC)和人脸识别技术(FERET)数据库(FERET)。对于1196个注册(FERET画廊),将操作点设置为1%的错误接受率(FAR)和99%的真实接受率(TAR),我们显示最多需要进行600次尝试(得分计算)才能获得73%的机会作为商业面部识别系统的随机选择目标对象的解决方案。通过类似的操作设置,我们分别获得了基于贝叶斯和基于PCA的面部识别系统的72%和100%的入侵机会。与thr-di

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号