首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Sharing Visual Features for Multiclass and Multiview Object Detection
【24h】

Sharing Visual Features for Multiclass and Multiview Object Detection

机译:共享用于多类和多视图对象检测的视觉功能

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of detecting a large number of different classes of objects in cluttered scenes. Traditional approaches require applying a battery of different classifiers to the image, at multiple locations and scales. This can be slow and can require a lot of training data since each classifier requires the computation of many different image features. In particular, for independently trained detectors, the (runtime) computational complexity and the (training-time) sample complexity scale linearly with the number of classes to be detected. We present a multitask learning procedure, based on boosted decision stumps, that reduces the computational and sample complexity by finding common features that can be shared across the classes (and/or views). The detectors for each class are trained jointly, rather than independently. For a given performance level, the total number of features required and, therefore, the runtime cost of the classifier, is observed to scale approximately logarithmically with the number of classes. The features selected by joint training are generic edge-like features, whereas the features chosen by training each class separately tend to be more object-specific. The generic features generalize better and considerably reduce the computational cost of multiclass object detection.
机译:我们考虑在混乱的场景中检测大量不同类别的对象的问题。传统方法需要在多个位置和多个比例下对图像应用一系列不同的分类器。这可能很慢,并且可能需要大量训练数据,因为每个分类器都需要计算许多不同的图像特征。特别地,对于独立训练的检测器,(运行时间)计算复杂度和(训练时间)样本复杂度与要检测的类别数量成线性比例。我们提出了一种基于增强决策树桩的多任务学习程序,该程序通过查找可以在类(和/或视图)之间共享的通用功能来降低计算和样本的复杂性。每个班级的探测器都是联合训练,而不是独立训练。对于给定的性能水平,观察到所需的功能总数以及分类器的运行时成本随类数近似对数地缩放。通过联合训练选择的特征是通用的类似边缘的特征,而通过分别训练每个类别选择的特征则倾向于特定于对象。通用特征可以更好地泛化,并大大降低了多类对象检测的计算成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号