首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Connected Shape-Size Pattern Spectra for Rotation and Scale-Invariant Classification of Gray-Scale Images
【24h】

Connected Shape-Size Pattern Spectra for Rotation and Scale-Invariant Classification of Gray-Scale Images

机译:连接的形状尺寸图案光谱用于灰度图像的旋转和尺度不变分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we describe a multiscale and multishape morphological method for pattern-based analysis and classification of gray-scale images using connected operators. Compared with existing methods, which use structuring elements, our method has three advantages. First, in our method, the time needed for computing pattern spectra does not depend on the number of scales or shapes used, i.e., the computation time is independent of the dimensions of the pattern spectrum. Second, size and strict shape attributes can be computed, which we use for the construction of joint 2D shape-size pattern spectra. Third, our method is significantly less sensitive to noise and is rotation-invariant. Although rotation invariance can also be approximated by methods using structuring elements at different angles, this tends to be computationally intensive. The classification performance of these methods is discussed using four image sets: Brodatz, COIL-20, COIL-100, and diatoms. The new method obtains better or equal classification performance to the best competitor with a 5 to 9-fold speed gain
机译:在本文中,我们描述了一种多尺度,多形态的形态学方法,用于使用连接的算子对灰度图像进行基于模式的分析和分类。与使用结构元素的现有方法相比,我们的方法具有三个优点。首先,在我们的方法中,计算图案光谱所需的时间不取决于所使用的刻度或形状的数量,即,计算时间与图案光谱的尺寸无关。其次,可以计算尺寸和严格的形状属性,我们将其用于构建联合2D形状-尺寸图案光谱。第三,我们的方法对噪声的敏感度大大降低,并且旋转不变。尽管也可以通过使用不同角度的结构化元素的方法来近似旋转不变性,但这往往需要大量的计算。使用四个图像集讨论了这些方法的分类性能:Brodatz,COIL-20,COIL-100和硅藻。新方法可以以5到9倍的速度获得与最佳竞争对手相同或更好的分类性能

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号