首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Automatic Semantic Annotation of Real-World Web Images
【24h】

Automatic Semantic Annotation of Real-World Web Images

机译:真实Web图像的自动语义注释

获取原文
获取原文并翻译 | 示例

摘要

As the number of web images is increasing at a rapid rate, searching them semantically presents a significant challenge. Many raw images are constantly uploaded with little meaningful direct annotations of semantic content, limiting their search and discovery. In this paper, we present a semantic annotation technique based on the use of image parametric dimensions and metadata. Using decision trees and rule induction, we develop a rule-based approach to formulate explicit annotations for images fully automatically, so that by the use of our method, semantic query such as " sunset by the sea in autumn in New York" can be answered and indexed purely by machine. Our system is evaluated quantitatively using more than 100,000 web images. Experimental results indicate that this approach is able to deliver highly competent performance, attaining good recall and precision rates of sometimes over 80%. This approach enables a new degree of semantic richness to be automatically associated with images which previously can only be performed manually.
机译:随着Web图像数量的快速增长,从语义上搜索它们是一个巨大的挑战。不断上传许多原始图像,但几乎没有有意义的语义内容直接注释,从而限制了它们的搜索和发现。在本文中,我们提出了一种基于图像参数维度和元数据的语义标注技术。通过使用决策树和规则归纳,我们开发了一种基于规则的方法来完全自动地为图像制定显式注释,从而通过使用我们的方法,可以回答诸如“纽约秋天的海边日落”之类的语义查询。并完全由机器编制索引。我们的系统使用超过100,000个Web图像进行了定量评估。实验结果表明,该方法能够提供出色的性能,获得良好的召回率和准确率,有时甚至超过80%。这种方法使新的语义丰富度可以自动与以前只能手动执行的图像相关联。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号