首页> 外文会议>Advances in data and web management >Automatic Web Image Annotation via Web-Scale Image Semantic Space Learning
【24h】

Automatic Web Image Annotation via Web-Scale Image Semantic Space Learning

机译:通过Web规模图像语义空间学习进行自动Web图像注释

获取原文
获取原文并翻译 | 示例

摘要

The correlation between keywords has been exploited to improve Automatic Image Annotation(AIA). Differing from the traditional lexicon or training data based keyword correlation estimation, we propose using Web-scale image semantic space learning to explore the keyword correlation for automatic Web image annotation. Specifically, we use the Social Media Web site: Flickr as Web scale image semantic space to determine the annotation keyword correlation graph to smooth the annotation probability estimation. To further improve Web image annotation performance, we present a novel constraint piecewise penalty weighted regression model to estimate the semantics of the Web image from the corresponding associated text. We integrate the proposed approaches into our Web image annotation framework and conduct experiments on a real Web image data set. The experimental results show that both of our approaches can improve the annotation performance significantly.
机译:关键字之间的相关性已被利用来改善自动图像注释(AIA)。与传统词典或基于训练数据的关键词相关性估计不同,我们建议使用Web尺度图像语义空间学习来探索用于自动Web图像注释的关键词相关性。具体而言,我们使用社交媒体网站:Flickr作为Web缩放图像语义空间来确定注释关键字相关图,以平滑注释概率估计。为了进一步提高Web图像批注的性能,我们提出了一种新颖的约束分段惩罚加权加权回归模型,可以从相应的关联文本中估计Web图像的语义。我们将提出的方法集成到我们的Web图像批注框架中,并在真实的Web图像数据集上进行实验。实验结果表明,我们的两种方法都可以显着提高注释性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号