首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >A Spatially Variant White-Patch and Gray-World Method for Color Image Enhancement Driven by Local Contrast
【24h】

A Spatially Variant White-Patch and Gray-World Method for Color Image Enhancement Driven by Local Contrast

机译:局部对比度驱动的彩色图像增强的空间变异白斑和灰度世界方法

获取原文
获取原文并翻译 | 示例

摘要

Starting from the revolutionary Retinex by Land and McCann, several further perceptually inspired color correction models have been developed with different aims, e.g. reproduction of color sensation, robust features recognition, enhancement of color images. Such models have a differential, spatially-variant and non-linear nature and they can coarsely be distinguished between white-patch (WP) and gray-world (GW) algorithms. In this paper we show that the combination of a pure WP algorithm (RSR: Random Spray Retinex) and an essentially GW one (ACE) leads to a more robust and better performing model (RACE). The choice of RSR and ACE follows from the recent identification of a unified spatially-variant approach for both algorithms. Mathematically, the originally distinct non-linear and differential mechanisms of RSR and ACE have been fused using the spray technique and local average operations. The investigation of RACE allowed us to put in evidence a common drawback of differential models: corruption of uniform image areas. To overcome this intrinsic defect, we devised a local and global contrast-based and image-driven regulation mechanism that has a general applicability to perceptually inspired color correction algorithms. Tests, comparisons and discussions are presented.
机译:从Land和McCann的革命性Retinex开始,已经开发出了几种具有不同目的的,受感知启发的色彩校正模型,例如再现色彩感觉,强大的功能识别,增强彩色图像。这样的模型具有差分,空间可变和非线性的性质,并且可以在白补丁(WP)算法和灰色世界(GW)算法之间进行粗略的区分。在本文中,我们证明了纯WP算法(RSR:Random Spray Retinex)和本质上是GW算法(ACE)的组合会导致更健壮和性能更好的模型(RACE)。 RSR和ACE的选择源于最近为这两种算法确定的统一空间变异方法。在数学上,已使用喷雾技术和局部平均操作融合了RSR和ACE最初独特的非线性和差分机制。对RACE的研究使我们能够证明差分模型的一个共同缺点:统一图像区域的损坏。为了克服这一固有缺陷,我们设计了一种基于局部和全局对比度的,由图像驱动的调节机制,该机制通常适用于感知启发式的色彩校正算法。进行了测试,比较和讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号