首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Analysis of Head Gesture and Prosody Patterns for Prosody-Driven Head-Gesture Animation
【24h】

Analysis of Head Gesture and Prosody Patterns for Prosody-Driven Head-Gesture Animation

机译:韵律驱动的头部手势动画的头部手势和韵律模式分析

获取原文
获取原文并翻译 | 示例

摘要

We propose a new two-stage framework for joint analysis of head gesture and speech prosody patterns of a speaker towards automatic realistic synthesis of head gestures from speech prosody. In the first stage analysis, we perform Hidden Markov Model (HMM) based unsupervised temporal segmentation of head gesture and speech prosody features separately to determine elementary head gesture and speech prosody patterns, respectively, for a particular speaker. In the second stage, joint analysis of correlations between these elementary head gesture and prosody patterns is performed using Multi-Stream HMMs to determine an audio-visual mapping model. The resulting audio-visual mapping model is then employed to synthesize natural head gestures from arbitrary input test speech given a head model for the speaker. In the synthesis stage, the audio-visual mapping model is used to predict a sequence of gesture patterns from the prosody pattern sequence computed for the input test speech. The Euler angles associated with each gesture pattern are then applied to animate the speaker head model. Objective and subjective evaluations indicate that the proposed synthesis by analysis scheme provides natural looking head gestures for the speaker with any input test speech, as well as in ``prosody transplant" and ``gesture transplant" scenarios.
机译:我们提出了一个新的两阶段框架,用于对演讲者的头部姿势和语音韵律模式进行联合分析,以实现从语音主体自动合成头部姿势。在第一阶段分析中,我们分别执行基于隐马尔可夫模型(HMM)的头部姿势和语音韵律特征的无监督时间分割,分别确定特定说话者的基本头部姿势和语音韵律模式。在第二阶段,使用多流HMM确定这些基本头部手势和韵律模式之间的相关性的联合分析,以确定视听映射模型。然后,将得到的视听映射模型用于从给定说话者头部模型的任意输入测试语音中合成自然头部手势。在合成阶段,视听映射模型用于根据为输入测试语音计算的韵律模式序列预测手势模式序列。然后,将与每个手势模式关联的欧拉角应用于对扬声器头模型进行动画处理。客观和主观评估表明,拟议的分析方法综合方案可以在任何输入测试语音以及``韵律移植''和``手势移植''情况下为说话者提供自然的头部表情。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号