首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Sequential Kernel Density Approximation and Its Application to Real-Time Visual Tracking
【24h】

Sequential Kernel Density Approximation and Its Application to Real-Time Visual Tracking

机译:顺序核密度近似及其在实时视觉跟踪中的应用

获取原文
获取原文并翻译 | 示例

摘要

Visual features are commonly modeled with probability density functions in computer vision problems, but current methods such as a mixture of Gaussians and kernel density estimation suffer from either the lack of flexibility, by fixing or limiting the number of Gaussian components in the mixture, or large memory requirement, by maintaining a non-parametric representation of the density. These problems are aggravated in real-time computer vision applications since density functions are required to be updated as new data becomes available. We present a novel kernel density approximation technique based on the mean-shift mode finding algorithm, and describe an efficient method to sequentially propagate the density modes over time. While the proposed density representation is memory efficient, which is typical for mixture densities, it inherits the flexibility of non-parametric methods by allowing the number of components to be variable. The accuracy and compactness of the sequential kernel density approximation technique is illustrated by both simulations and experiments. Sequential kernel density approximation is applied to on-line target appearance modeling for visual tracking, and its performance is demonstrated on a variety of videos.
机译:在计算机视觉问题中,通常使用概率密度函数对视觉特征进行建模,但是当前的方法(例如混合高斯和核密度估计)会因缺乏灵活性,固定或限制混合中高斯分量的数量或较大通过保持密度的非参数表示来满足存储需求。这些问题在实时计算机视觉应用程序中更加严重,因为随着新数据的出现,需要更新密度函数。我们提出了一种基于均值漂移模式发现算法的新颖核密度近似技术,并描述了一种有效的方法来随着时间的推移依次传播密度模式。虽然所提出的密度表示具有存储效率,这对于混合密度来说是典型的,但它允许组件数量可变,从而继承了非参数方法的灵活性。仿真和实验都说明了顺序核密度近似技术的准确性和紧凑性。顺序内核密度近似应用于在线目标外观建模以进行视觉跟踪,并且其性能已在各种视频中得到证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号