首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors
【24h】

A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors

机译:基于光滑度先验的马尔可夫随机场能量最小化方法的比较研究

获取原文
获取原文并翻译 | 示例

摘要

Among the most exciting advances in early vision has been the development of efficient energy minimization algorithms for pixel-labeling tasks such as depth or texture computation. It has been known for decades that such problems can be elegantly expressed as Markov random fields, yet the resulting energy minimization problems have been widely viewed as intractable. Recently, algorithms such as graph cuts and loopy belief propagation (LBP) have proven to be very powerful: for example, such methods form the basis for almost all the top-performing stereo methods. However, the tradeoffs among different energy minimization algorithms are still not well understood. In this paper we describe a set of energy minimization benchmarks and use them to compare the solution quality and running time of several common energy minimization algorithms. We investigate three promising recent methods graph cuts, LBP, and tree-reweighted message passing in addition to the well-known older iterated conditional modes (ICM) algorithm. Our benchmark problems are drawn from published energy functions used for stereo, image stitching, interactive segmentation, and denoising. We also provide a general-purpose software interface that allows vision researchers to easily switch between optimization methods. Benchmarks, code, images, and results are available at http://vision.middlebury.edu/MRF/.
机译:早期视觉领域最激动人心的进展之一就是开发了用于像素标注任务(例如深度或纹理计算)的高效能量最小化算法。几十年来,人们已经知道这类问题可以用马尔可夫随机场很好地表达,但是由此产生的能量最小化问题却被广泛认为是棘手的。最近,已证明诸如图割和循环信念传播(LBP)之类的算法非常强大:例如,此类方法构成了几乎所有性能最佳的立体方法的基础。然而,不同能量最小化算法之间的权衡仍然没有被很好地理解。在本文中,我们描述了一组能量最小化基准,并使用它们来比较几种常见能量最小化算法的解决方案质量和运行时间。除了众所周知的较旧的迭代条件模式(ICM)算法之外,我们还研究了三种有前途的最近方法:图割,LBP和树重加权消息传递。我们的基准测试问题来自已发布的用于立体声,图像拼接,交互式分割和去噪的能量函数。我们还提供了通用软件界面,使视觉研究人员可以轻松地在优化方法之间进行切换。基准,代码,图像和结果可从http://vision.middlebury.edu/MRF/获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号