首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Evaluation of Gender Classification Methods with Automatically Detected and Aligned Faces
【24h】

Evaluation of Gender Classification Methods with Automatically Detected and Aligned Faces

机译:通过自动检测和对齐的面孔评估性别分类方法

获取原文
获取原文并翻译 | 示例

摘要

We present a systematic study on gender classification with automatically detected and aligned faces. We experimented with 120 combinations of automatic face detection, face alignment and gender classification. One of the findings was that the automatic face alignment methods did not increase the gender classification rates. However, manual alignment increased classification rates a little, which suggests that automatic alignment would be useful when the alignment methods are further improved. We also found that the gender classification methods performed almost equally well with different input image sizes. In any case, the best classification rate was achieved with a support vector machine. A neural network and Adaboost achieved almost as good classification rates as the support vector machine and could be used in applications where classification speed is considered more important than the best possible classification accuracy.
机译:我们提出了具有自动检测和对齐面孔的性别分类的系统研究。我们尝试了120种自动面部识别,面部对齐和性别分类的组合。研究结果之一是,自动面部对准方法并未提高性别分类率。但是,手动对齐会稍微提高分类率,这表明当对齐方法得到进一步改进时,自动对齐将很有用。我们还发现,在输入图像大小不同的情况下,性别分类方法的效果几乎相同。在任何情况下,使用支持向量机均可达到最佳分类率。神经网络和Adaboost几乎达到了与支持向量机相同的分类率,可用于认为分类速度比可能的最佳分类精度更重要的应用中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号