首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Maximum-Likelihood Registration of Range Images with Missing Data
【24h】

Maximum-Likelihood Registration of Range Images with Missing Data

机译:具有丢失数据的距离图像的最大似然配准

获取原文
获取原文并翻译 | 示例

摘要

Missing data are common in range images, due to geometric occlusions, limitations in the sensor field of view, poor reflectivity, depth discontinuities, and cast shadows. Using registration to align these data often fails, because points without valid correspondences can be incorrectly matched. This paper presents a maximum likelihood method for registration of scenes with unmatched or missing data. Using ray casting, correspondences are formed between valid and missing points in each view. These correspondences are used to classify points by their visibility properties, including occlusions, field of view, and shadow regions. The likelihood of each point match is then determined using statistical properties of the sensor, such as noise and outlier distributions. Experiments demonstrate a high rates of convergence on complex scenes with varying degrees of overlap.
机译:由于几何遮挡,传感器视场限制,反射率差,深度不连续和投射阴影,在距离图像中缺少数据是常见的。使用注册来对齐这些数据通常会失败,因为没有有效对应关系的点可能会被错误地匹配。本文提出了一种用于数据不匹配或丢失的场景配准的最大似然方法。使用射线投射,在每个视图中的有效点和缺失点之间形成对应关系。这些对应关系用于通过点的可见性属性(包括遮挡,视场和阴影区域)对点进行分类。然后,使用传感器的统计属性(例如噪声和异常值分布)确定每个点匹配的可能性。实验表明,在具有不同重叠程度的复杂场景上,收敛速度很高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号