首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Robust Sequential Data Modeling Using an Outlier Tolerant Hidden Markov Model
【24h】

Robust Sequential Data Modeling Using an Outlier Tolerant Hidden Markov Model

机译:使用异常值容忍的隐马尔可夫模型进行稳健的顺序数据建模

获取原文
获取原文并翻译 | 示例

摘要

Hidden Markov (chain) models using finite Gaussian mixture models as their hidden state distributions have been successfully applied in sequential data modeling and classification applications. Nevertheless, Gaussian mixture models are well known to be highly intolerant to the presence of untypical data within the fitting data sets used for their estimation. Finite Student's t-mixture models have recently emerged as a heavier-tailed, robust alternative to Gaussian mixture models, overcoming these hurdles. To exploit these merits of Student's t-mixture models in the context of a sequential data modeling setting, we introduce, in this paper, a novel hidden Markov model where the hidden state distributions are considered to be finite mixtures of multivariate Student's t-densities. We derive an algorithm for the model parameters estimation under a maximum likelihood framework, assuming full, diagonal, and factor-analyzed covariance matrices. The advantages of the proposed model over conventional approaches are experimentally demonstrated through a series of sequential data modeling applications.
机译:使用有限高斯混合模型作为其隐藏状态分布的隐马尔可夫(链)模型已成功应用于顺序数据建模和分类应用中。尽管如此,众所周知,高斯混合模型对于用于估计的拟合数据集中的非典型数据的存在是高度不容忍的。有限学生的t-混合模型最近作为高斯混合模型的一种重尾的,健壮的替代品出现,克服了这些障碍。为了在顺序数据建模设置的背景下利用学生t混合模型的这些优点,我们在本文中介绍了一种新颖的隐马尔可夫模型,其中,隐藏状态分布被认为是多元学生t密度的有限混合。我们推导了一个在最大似然框架下,用于模型参数估计的算法,其中假设了全,对角线和因子分析的协方差矩阵。通过一系列顺序数据建模应用,实验证明了所提出模型相对于常规方法的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号