首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >An O(N²) Square Root Unscented Kalman Filter for Visual Simultaneous Localization and Mapping
【24h】

An O(N²) Square Root Unscented Kalman Filter for Visual Simultaneous Localization and Mapping

机译:用于视觉同时定位和映射的O(N²)平方根无味卡尔曼滤波器

获取原文
获取原文并翻译 | 示例

摘要

This paper develops a Square Root Unscented Kalman Filter (SRUKF) for performing video-rate visual simultaneous localization and mapping (SLAM) using a single camera. The conventional UKF has been proposed previously for SLAM, improving the handling of nonlinearities compared with the more widely used Extended Kalman Filter (EKF). However, no account was taken of the comparative complexity of the algorithms: In SLAM, the UKF scales as O(N^{3}) in the state length, compared to the EKF's O(N^{2}), making it unsuitable for video-rate applications with other than unrealistically few scene points. Here, it is shown that the SRUKF provides the same results as the UKF to within machine accuracy and that it can be reposed with complexity O(N^{2}) for state estimation in visual SLAM. This paper presents results from video-rate experiments on live imagery. Trials using synthesized data show that the consistency of the SRUKF is routinely better than that of the EKF, but that its overall cost settles at an order of magnitude greater than the EKF for large scenes.
机译:本文开发了平方根无味卡尔曼滤波器(SRUKF),用于使用单个摄像机执行视频速率的视觉同时定位和制图(SLAM)。先前已经为SLAM提出了常规UKF,与更广泛使用的扩展卡尔曼滤波器(EKF)相比,改进了非线性处理。但是,没有考虑算法的相对复杂性:在SLAM中,与EKF的O(N ^ {2})相比,UKF在状态长度中按O(N ^ {3})缩放,使其不合适。适用于场景点很少的视频速率应用。在这里,表明SRUKF在机器精度内提供了与UKF相同的结果,并且可以用复杂度O(N ^ {2})替换以用于视觉SLAM中的状态估计。本文介绍了实时图像视频速率实验的结果。使用合成数据进行的试验表明,SRUKF的一致性通常要比EKF更好,但是对于大型场景,其总成本要比EKF大一个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号