首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Object Detection with Discriminatively Trained Part-Based Models
【24h】

Object Detection with Discriminatively Trained Part-Based Models

机译:区分训练的基于零件的模型的目标检测

获取原文
获取原文并翻译 | 示例

摘要

We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular, their value had not been demonstrated on difficult benchmarks such as the PASCAL data sets. Our system relies on new methods for discriminative training with partially labeled data. We combine a margin-sensitive approach for data-mining hard negative examples with a formalism we call latent SVM. A latent SVM is a reformulation of MI--SVM in terms of latent variables. A latent SVM is semiconvex, and the training problem becomes convex once latent information is specified for the positive examples. This leads to an iterative training algorithm that alternates between fixing latent values for positive examples and optimizing the latent SVM objective function.
机译:我们描述了基于多尺度可变形零件模型混合的物体检测系统。我们的系统能够表示高度可变的对象类别,并在PASCAL对象检测挑战中获得最先进的结果。尽管可变形零件模型已变得非常流行,但它们的价值尚未在诸如PASCAL数据集等困难的基准上得到证明。我们的系统依靠新的方法来对带有部分标签的数据进行区分训练。我们将用于数据挖掘硬否定示例的边距敏感方法与一种称为潜伏SVM的形式化方法相结合。潜在SVM是关于潜在变量的MI--SVM的重新表述。潜在SVM是半凸的,一旦为正例指定了潜在信息,训练问题就变得凸了。这导致了迭代训练算法,该算法在固定潜在示例的潜在值与优化潜在SVM目标函数之间交替。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号