首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Training-Free, Generic Object Detection Using Locally Adaptive Regression Kernels
【24h】

Training-Free, Generic Object Detection Using Locally Adaptive Regression Kernels

机译:使用局部自适应回归核的无训练通用对象检测

获取原文
获取原文并翻译 | 示例

摘要

We present a generic detection/localization algorithm capable of searching for a visual object of interest without training. The proposed method operates using a single example of an object of interest to find similar matches, does not require prior knowledge (learning) about objects being sought, and does not require any preprocessing step or segmentation of a target image. Our method is based on the computation of local regression kernels as descriptors from a query, which measure the likeness of a pixel to its surroundings. Salient features are extracted from said descriptors and compared against analogous features from the target image. This comparison is done using a matrix generalization of the cosine similarity measure. We illustrate optimality properties of the algorithm using a naive-Bayes framework. The algorithm yields a scalar resemblance map, indicating the likelihood of similarity between the query and all patches in the target image. By employing nonparametric significance tests and nonmaxima suppression, we detect the presence and location of objects similar to the given query. The approach is extended to account for large variations in scale and rotation. High performance is demonstrated on several challenging data sets, indicating successful detection of objects in diverse contexts and under different imaging conditions.
机译:我们提出了一种通用的检测/定位算法,无需训练即可搜索感兴趣的视觉对象。所提出的方法使用感兴趣的对象的单个示例进行操作以找到相似的匹配,不需要关于正在寻找的对象的先验知识(学习),并且不需要任何预处理步骤或目标图像的分割。我们的方法基于作为查询的描述符的局部回归核的计算,该核用于测量像素与其周围环境的相似度。从所述描述符中提取显着特征,并将其与来自目标图像的类似特征进行比较。使用余弦相似性度量的矩阵概括来完成此比较。我们使用朴素贝叶斯框架说明算法的最优性质。该算法产生一个标量相似图,指示查询与目标图像中所有面片之间相似的可能性。通过采用非参数显着性检验和非最大值抑制,我们可以检测与给定查询相似的对象的存在和位置。该方法已扩展为解决比例和旋转的较大变化。在几个具有挑战性的数据集上证明了高性能,这表明在不同环境下和不同成像条件下成功检测到物体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号