首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Human Action Recognition in Videos Using Kinematic Features and Multiple Instance Learning
【24h】

Human Action Recognition in Videos Using Kinematic Features and Multiple Instance Learning

机译:使用运动学特征和多实例学习的视频中人类动作识别

获取原文
获取原文并翻译 | 示例

摘要

We propose a set of kinematic features that are derived from the optical flow for human action recognition in videos. The set of kinematic features includes divergence, vorticity, symmetric and antisymmetric flow fields, second and third principal invariants of flow gradient and rate of strain tensor, and third principal invariant of rate of rotation tensor. Each kinematic feature, when computed from the optical flow of a sequence of images, gives rise to a spatiotemporal pattern. It is then assumed that the representative dynamics of the optical flow are captured by these spatiotemporal patterns in the form of dominant kinematic trends or kinematic modes. These kinematic modes are computed by performing Principal Component Analysis (PCA) on the spatiotemporal volumes of the kinematic features. For classification, we propose the use of multiple instance learning (MIL) in which each action video is represented by a bag of kinematic modes. Each video is then embedded into a kinematic-mode-based feature space and the coordinates of the video in that space are used for classification using the nearest neighbor algorithm. The qualitative and quantitative results are reported on the benchmark data sets.
机译:我们提出了一组运动学特征,这些运动学特征是从光流派生出来的,用于视频中的人类动作识别。运动学特征集包括散度,涡度,对称和反对称流场,流动梯度和应变张量的速率的第二和第三主要不变量,旋转张量速率的第三主要不变量。当从一系列图像的光流计算出每个运动学特征时,就会产生一个时空模式。然后,假定这些时空模式以主要运动趋势或运动模式的形式捕获了光流的代表性动力学。这些运动模式是通过对运动特征的时空体积执行主成分分析(PCA)来计算的。对于分类,我们建议使用多实例学习(MIL),其中每个动作视频都由一整套运动模式表示。然后将每个视频嵌入到基于运动学模式的特征空间中,并使用最近邻算法将该空间中视频的坐标用于分类。定性和定量结果报告在基准数据集上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号