首页> 外文OA文献 >Recognizing human actions from noisy videos via multiple instance learning Gürültü içeren videolardan insan hareketlerinin çoklu örnekle ö̌grenme ile taninmasi
【2h】

Recognizing human actions from noisy videos via multiple instance learning Gürültü içeren videolardan insan hareketlerinin çoklu örnekle ö̌grenme ile taninmasi

机译:通过多实例学习从嘈杂的视频中识别人为行为。

摘要

In this work, we study the task of recognizing human actions from noisy videos and effects of noise to recognition performance and propose a possible solution. Datasets available in computer vision literature are relatively small and could include noise due to labeling source. For new and relatively big datasets, noise amount would possible increase and the performance of traditional instance based learning methods is likely to decrease. In this work, we propose a multiple instance learning-based solution in case of an increase in noise. For this purpose, each video is represented with spatio-temporal features, then bag-of-words method is applied. Then, using support vector machines (SVM), both instance-based learning and multiple instance learning classifiers are constructed and compared. The classification results show that multiple instance learning classifiers has better performance than instance based learning counterparts on noisy videos. © 2013 IEEE.
机译:在这项工作中,我们研究了从嘈杂的视频和噪声影响到识别性能来识别人类行为的任务,并提出了可能的解决方案。计算机视觉文献中可用的数据集相对较小,并且可能包括由于标签来源而产生的噪声。对于新的且相对较大的数据集,噪声量可能会增加,而传统的基于实例的学习方法的性能可能会下降。在这项工作中,我们提出了一种在噪声增加的情况下基于多实例学习的解决方案。为此,每个视频都具有时空特征,然后应用词袋法。然后,使用支持向量机(SVM),构建并比较基于实例的学习分类器和多个实例学习的分类器。分类结果表明,多实例学习分类器的性能优于带噪视频上基于实例的学习分类器。 ©2013 IEEE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号