【24h】

Nonparametric Scene Parsing via Label Transfer

机译:通过标签传输进行非参数场景解析

获取原文
获取原文并翻译 | 示例

摘要

While there has been a lot of recent work on object recognition and image understanding, the focus has been on carefully establishing mathematical models for images, scenes, and objects. In this paper, we propose a novel, nonparametric approach for object recognition and scene parsing using a new technology we name label transfer. For an input image, our system first retrieves its nearest neighbors from a large database containing fully annotated images. Then, the system establishes dense correspondences between the input image and each of the nearest neighbors using the dense SIFT flow algorithm [28], which aligns two images based on local image structures. Finally, based on the dense scene correspondences obtained from SIFT flow, our system warps the existing annotations and integrates multiple cues in a Markov random field framework to segment and recognize the query image. Promising experimental results have been achieved by our nonparametric scene parsing system on challenging databases. Compared to existing object recognition approaches that require training classifiers or appearance models for each object category, our system is easy to implement, has few parameters, and embeds contextual information naturally in the retrieval/alignment procedure.
机译:尽管最近有很多关于对象识别和图像理解的工作,但是重点一直放在精心建立图像,场景和对象的数学模型上。在本文中,我们提出了一种新的非参数方法,该方法使用名为标签传输的新技术进行对象识别和场景解析。对于输入图像,我们的系统首先从包含完全注释图像的大型数据库中检索其最近的邻居。然后,系统使用密集SIFT流算法[28]在输入图像和每个最近邻之间建立密集对应关系,该算法基于局部图像结构对齐两个图像。最后,基于从SIFT流获得的密集场景对应关系,我们的系统对现有注释进行扭曲,并在Markov随机场框架中集成了多个线索,以分割和识别查询图像。通过我们具有挑战性的数据库上的非参数场景解析系统,已经获得了可观的实验结果。与需要针对每个对象类别训练分类器或外观模型的现有对象识别方法相比,我们的系统易于实现,参数很少,并且将上下文信息自然地嵌入到检索/对齐过程中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号