首页> 外文期刊>Computer vision and image understanding >Scene parsing by nonparametric label transfer of content-adaptive windows
【24h】

Scene parsing by nonparametric label transfer of content-adaptive windows

机译:通过内容自适应窗口的非参数标签传输进行场景解析

获取原文
获取原文并翻译 | 示例

摘要

Scene parsing is the task of labeling every pixel in an image with its semantic category. We present CollageParsing, a nonparametric scene parsing algorithm that performs label transfer by matching content-adaptive windows. Content-adaptive windows provide a higher level of perceptual organization than superpixels, and unlike superpixels are designed to preserve entire objects instead of fragmenting them. Performing label transfer using content-adaptive windows enables the construction of a more effective Markov random field unary potential than previous approaches. On a standard benchmark consisting of outdoor scenes from the LabelMe database, CollageParsing obtains state-of-the-art performance with 15-19% higher average per-class accuracy than recent nonparametric scene parsing algorithms.
机译:场景解析是用语义类别标记图像中的每个像素的任务。我们提出了CollageParsing,这是一种非参数场景解析算法,通过匹配内容自适应窗口来执行标签传输。内容自适应的窗口提供了比超像素更高的感知组织,并且与超像素不同,超像素被设计为保留整个对象而不是将它们破碎。使用内容自适应窗口执行标签传输可以构造比以前的方法更有效的马尔可夫随机场一元势。在LabelMe数据库中由室外场景组成的标准基准上,CollageParsing获得了最新的性能,与最近的非参数场景解析算法相比,每类平均精度提高了15-19%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号