首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >A Tensor-Based Algorithm for High-Order Graph Matching
【24h】

A Tensor-Based Algorithm for High-Order Graph Matching

机译:基于张量的高阶图匹配算法

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of establishing correspondences between two sets of visual features using higher order constraints instead of the unary or pairwise ones used in classical methods. Concretely, the corresponding hypergraph matching problem is formulated as the maximization of a multilinear objective function over all permutations of the features. This function is defined by a tensor representing the affinity between feature tuples. It is maximized using a generalization of spectral techniques where a relaxed problem is first solved by a multidimensional power method and the solution is then projected onto the closest assignment matrix. The proposed approach has been implemented, and it is compared to state-of-the-art algorithms on both synthetic and real data.
机译:本文解决了使用高阶约束代替经典方法中使用的一元或成对约束在两组视觉特征之间建立对应关系的问题。具体地,将对应的超图匹配问题表述为特征的所有排列上的多线性目标函数的最大化。此函数由张量定义,该张量表示要素元组之间的亲和力。使用频谱技术的一般化将其最大化,其中首先通过多维幂方法解决松弛问题,然后将解决方案投影到最接近的分配矩阵上。所提出的方法已经实施,并且已与综合和真实数据上的最新算法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号