首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Theory and Algorithms for Constructing Discrete Morse Complexes from Grayscale Digital Images
【24h】

Theory and Algorithms for Constructing Discrete Morse Complexes from Grayscale Digital Images

机译:从灰度数字图像构造离散摩尔斯复合体的理论和算法

获取原文
获取原文并翻译 | 示例

摘要

We present an algorithm for determining the Morse complex of a two or three-dimensional grayscale digital image. Each cell in the Morse complex corresponds to a topological change in the level sets (i.e., a critical point) of the grayscale image. Since more than one critical point may be associated with a single image voxel, we model digital images by cubical complexes. A new homotopic algorithm is used to construct a discrete Morse function on the cubical complex that agrees with the digital image and has exactly the number and type of critical cells necessary to characterize the topological changes in the level sets. We make use of discrete Morse theory and simple homotopy theory to prove correctness of this algorithm. The resulting Morse complex is considerably simpler than the cubical complex originally used to represent the image and may be used to compute persistent homology.
机译:我们提出一种确定二维或三维灰度数字图像的摩尔斯复合体的算法。摩尔斯复合体中的每个像元都对应于灰度图像的水平集(即临界点)中的拓扑变化。由于可能有多个临界点与单个图像体素相关联,因此我们通过立方复合体对数字图像进行建模。一种新的同位异义算法用于在立方复合体上构造离散的摩尔斯函数,该函数与数字图像相符,并且具有表征水平集中拓扑变化所必需的关键单元的数量和类型。我们利用离散莫尔斯理论和简单同伦理论来证明该算法的正确性。所得的摩尔斯复杂度比最初用于表示图像的立方复杂度要简单得多,并且可用于计算持久性同源性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号