首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Skeletonization and Partitioning of Digital Images Using Discrete Morse Theory
【24h】

Skeletonization and Partitioning of Digital Images Using Discrete Morse Theory

机译:利用离散莫尔斯理论对数字图像进行骨架化和分割

获取原文
获取原文并翻译 | 示例

摘要

We show how discrete Morse theory provides a rigorous and unifying foundation for defining skeletons and partitions of grayscale digital images. We model a grayscale image as a cubical complex with a real-valued function defined on its vertices (the voxel values). This function is extended to a discrete gradient vector field using the algorithm presented in Robins, Wood, Sheppard TPAMI 33:1646 (2011). In the current paper we define basins (the building blocks of a partition) and segments of the skeleton using the stable and unstable sets associated with critical cells. The natural connection between Morse theory and homology allows us to prove the topological validity of these constructions; for example, that the skeleton is homotopic to the initial object. We simplify the basins and skeletons via Morse-theoretic cancellation of critical cells in the discrete gradient vector field using a strategy informed by persistent homology. Simple working Python code for our algorithms for efficient vector field traversal is included. Example data are taken from micro-CT images of porous materials, an application area where accurate topological models of pore connectivity are vital for fluid-flow modelling.
机译:我们将展示离散莫尔斯理论如何为定义灰度数字图像的骨架和分区提供严格而统一的基础。我们将灰度图像建模为立方复合体,并在其顶点(体素值)上定义了实值函数。使用Robins,Wood,Sheppard TPAMI 33:1646(2011)中介绍的算法将此功能扩展到离散梯度矢量场。在当前的论文中,我们使用与关键单元格相关的稳定集和不稳定集来定义盆地(分区的构造块)和骨骼的片段。摩尔斯理论和同源性之间的自然联系使我们能够证明这些结构的拓扑有效性。例如,骨骼与初始对象是同位的。我们使用持久同源性提供的策略通过离散梯度向量场中关键细胞的摩尔斯理论消除来简化盆地和骨架。其中包含用于我们算法的简单有效的Python代码,以实现有效的矢量场遍历。示例数据取自多孔材料的微CT图像,该区域是应用领域,其中精确的孔连通性拓扑模型对于流体流动建模至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号