首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Meta-Recognition: The Theory and Practice of Recognition Score Analysis
【24h】

Meta-Recognition: The Theory and Practice of Recognition Score Analysis

机译:元识别:识别分数分析的理论与实践

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we define meta-recognition, a performance prediction method for recognition algorithms, and examine the theoretical basis for its postrecognition score analysis form through the use of the statistical extreme value theory (EVT). The ability to predict the performance of a recognition system based on its outputs for each match instance is desirable for a number of important reasons, including automatic threshold selection for determining matches and nonmatches, and automatic algorithm selection or weighting for multi-algorithm fusion. The emerging body of literature on postrecognition score analysis has been largely constrained to biometrics, where the analysis has been shown to successfully complement or replace image quality metrics as a predictor. We develop a new statistical predictor based upon the Weibull distribution, which produces accurate results on a per instance recognition basis across different recognition problems. Experimental results are provided for two different face recognition algorithms, a fingerprint recognition algorithm, a SIFT-based object recognition system, and a content-based image retrieval system.
机译:在本文中,我们定义了元识别,一种用于识别算法的性能预测方法,并通过使用统计极值理论(EVT)来检验其识别后得分分析形式的理论基础。出于多种重要原因,需要基于针对每个匹配实例的输出来预测识别系统性能的能力,这些重要原因包括:用于确定匹配和不匹配的自动阈值选择,以及用于多算法融合的自动算法选择或加权。关于识别后得分分析的新兴文献已很大程度上局限于生物统计学,在生物统计学中,该分析已被证明可以成功地补充或替代图像质量度量作为预测指标。我们基于Weibull分布开发了一种新的统计预测器,该预测器在每个实例识别的基础上针对不同的识别问题产生准确的结果。针对两种不同的面部识别算法,指纹识别算法,基于SIFT的对象识别系统和基于内容的图像检索系统提供了实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号