【24h】

Matching Forensic Sketches to Mug Shot Photos

机译:将法医草图与杯子照片相匹配

获取原文
获取原文并翻译 | 示例

摘要

The problem of matching a forensic sketch to a gallery of mug shot images is addressed in this paper. Previous research in sketch matching only offered solutions to matching highly accurate sketches that were drawn while looking at the subject (viewed sketches). Forensic sketches differ from viewed sketches in that they are drawn by a police sketch artist using the description of the subject provided by an eyewitness. To identify forensic sketches, we present a framework called local feature-based discriminant analysis (LFDA). In LFDA, we individually represent both sketches and photos using SIFT feature descriptors and multiscale local binary patterns (MLBP). Multiple discriminant projections are then used on partitioned vectors of the feature-based representation for minimum distance matching. We apply this method to match a data set of 159 forensic sketches against a mug shot gallery containing 10,159 images. Compared to a leading commercial face recognition system, LFDA offers substantial improvements in matching forensic sketches to the corresponding face images. We were able to further improve the matching performance using race and gender information to reduce the target gallery size. Additional experiments demonstrate that the proposed framework leads to state-of-the-art accuracys when matching viewed sketches.
机译:本文解决了将法医草图与杯子照片图像库匹配的问题。先前的草图匹配研究仅提供了解决方案,以匹配在查看主题时绘制的高精度草图(查看的草图)。司法素描与已查看的素描的不同之处在于,它们是由警察素描画家使用目击者提供的主题描述来绘制的。为了识别法医素描,我们提出了一个称为基于局部特征的判别分析(LFDA)的框架。在LFDA中,我们使用SIFT特征描述符和多尺度局部二进制模式(MLBP)分别表示草图和照片。然后在基于特征的表示的分割矢量上使用多个判别投影,以实现最小距离匹配。我们应用此方法将159个法医素描的数据集与包含10,159张图像的杯子照片库进行匹配。与领先的商业人脸识别系统相比,LFDA在将法医素描与相应的人脸图像进行匹配方面提供了实质性的改进。我们能够使用种族和性别信息来进一步提高比赛表现,从而缩小目标画廊的规模。其他实验证明,当匹配查看的草图时,提出的框架可带来最新的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号