首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Large-Margin Predictive Latent Subspace Learning for Multiview Data Analysis
【24h】

Large-Margin Predictive Latent Subspace Learning for Multiview Data Analysis

机译:用于多视图数据分析的大余量预测潜在子空间学习

获取原文
获取原文并翻译 | 示例

摘要

Learning salient representations of multiview data is an essential step in many applications such as image classification, retrieval, and annotation. Standard predictive methods, such as support vector machines, often directly use all the features available without taking into consideration the presence of distinct views and the resultant view dependencies, coherence, and complementarity that offer key insights to the semantics of the data, and are therefore offering weak performance and are incapable of supporting view-level analysis. This paper presents a statistical method to learn a predictive subspace representation underlying multiple views, leveraging both multiview dependencies and availability of supervising side-information. Our approach is based on a multiview latent subspace Markov network (MN) which fulfills a weak conditional independence assumption that multiview observations and response variables are conditionally independent given a set of latent variables. To learn the latent subspace MN, we develop a large-margin approach which jointly maximizes data likelihood and minimizes a prediction loss on training data. Learning and inference are efficiently done with a contrastive divergence method. Finally, we extensively evaluate the large-margin latent MN on real image and hotel review datasets for classification, regression, image annotation, and retrieval. Our results demonstrate that the large-margin approach can achieve significant improvements in terms of prediction performance and discovering predictive latent subspace representations.
机译:学习多视图数据的显着表示形式是许多应用程序中必不可少的步骤,例如图像分类,检索和注释。标准的预测方法(例如支持向量机)通常直接使用所有可用功能,而没有考虑不同视图的存在以及由此产生的对数据语义的关键见解的视图依赖性,一致性和互补性,因此是提供的性能较弱,并且无法支持视图级分析。本文提出了一种统计方法,可利用多视图依赖性和辅助边信息的可用性来学习基于多个视图的预测子空间表示。我们的方法基于多视图潜在子空间马尔可夫网络(MN),该网络满足了一个弱条件独立性假设,即假设一组潜在变量,多视图观测值和响应变量在条件上是独立的。为了学习潜在子空间MN,我们开发了一种大幅度的方法,该方法共同使数据的可能性最大化,并使训练数据的预测损失最小。使用对比发散法可以有效地完成学习和推理。最后,我们在真实图像和酒店评论数据集上对大幅度潜在MN进行了广泛评估,以进行分类,回归,图像注释和检索。我们的结果表明,大幅度方法可以在预测性能和发现预测潜在子空间表示方面取得显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号