首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Partially Shared Latent Factor Learning With Multiview Data
【24h】

Partially Shared Latent Factor Learning With Multiview Data

机译:多视图数据的部分共享潜在因子学习

获取原文
获取原文并翻译 | 示例

摘要

Multiview representations reveal the fundamental attributes of the studied instances from different perspectives. Some common perspectives are reviewed by multiple views simultaneously, while some specific ones are reflected by individual views. That is, there are two kinds of properties embedded in the multiview data: 1) consistency and 2) complementarity. Different from most multiview learning approaches only focusing on either consistency or complementarity, this paper proposes a novel semisupervised multiview learning algorithm, called partially shared latent factor (PSLF) learning, which jointly exploits both consistent and complementary information among multiple views. In PSLF, a nonnegative matrix factorization (NMF)-based formulation is adopted to learn a compact and comprehensive partially shared latent representation, which is composed of common latent factors shared by multiple views and some specific latent factors to each view. With the learned representations of multiview data, we introduce a robust sparse regression model to predict the cluster labels of labeled data. By integrating the NMF-based model and the regression model, we obtain a unified formulation and propose a multiplicative-based alternative algorithm for optimization. In addition, PSLF can learn the weights of different views adaptively according to the reconstruction precisions of data matrices. Our experimental study indicates different multiview data that contains consistent and complementary information in different degrees. In addition, the encouraging results of the proposed algorithm are achieved in comparison with the state-of-the-art algorithms on real-world data sets.
机译:多视图表示从不同角度揭示了所研究实例的基本属性。一些共同的观点同时被多种观点所审视,而某些特定的观点则被个别观点所反映。也就是说,多视图数据中嵌入了两种属性:1)一致性和2)互补性。与大多数只关注一致性或互补性的多视图学习方法不同,本文提出了一种新颖的半监督多视图学习算法,称为部分共享潜在因子(PSLF)学习,该算法联合利用多视图之间的一致性和互补性信息。在PSLF中,采用基于非负矩阵分解(NMF)的公式来学习紧凑而全面的部分共享的潜在表示,该表示由多个视图共享的公共潜在因子和每个视图的某些特定潜在因子组成。借助学习到的多视图数据表示,我们引入了鲁棒的稀疏回归模型来预测标记数据的聚类标签。通过整合基于NMF的模型和回归模型,我们获得了统一的表述,并提出了基于乘法的替代算法进行优化。另外,PSLF可以根据数据矩阵的重构精度自适应地学习不同视图的权重。我们的实验研究表明,不同的多视图数据包含不同程度的一致性和互补性信息。此外,与现实世界数据集上的最新算法相比,所提出算法的结果令人鼓舞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号