首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >A Model-Based Sequence Similarity with Application to Handwritten Word Spotting
【24h】

A Model-Based Sequence Similarity with Application to Handwritten Word Spotting

机译:基于模型的序列相似度及其在手写单词发现中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel similarity measure between vector sequences. We work in the framework of model-based approaches, where each sequence is first mapped to a Hidden Markov Model (HMM) and then a measure of similarity is computed between the HMMs. We propose to model sequences with semicontinuous HMMs (SC-HMMs). This is a particular type of HMM whose emission probabilities in each state are mixtures of shared Gaussians. This crucial constraint provides two major benefits. First, the a priori information contained in the common set of Gaussians leads to a more accurate estimate of the HMM parameters. Second, the computation of a similarity between two SC-HMMs can be simplified to a Dynamic Time Warping (DTW) between their mixture weight vectors, which significantly reduces the computational cost. Experiments are carried out on a handwritten word retrieval task in three different datasets—an in-house dataset of real handwritten letters, the George Washington dataset, and the IFN/ENIT dataset of Arabic handwritten words. These experiments show that the proposed similarity outperforms the traditional DTW between the original sequences, and the model-based approach which uses ordinary continuous HMMs. We also show that this increase in accuracy can be traded against a significant reduction of the computational cost.
机译:本文提出了一种新的向量序列之间的相似性度量。我们在基于模型的方法的框架中工作,其中每个序列首先映射到隐马尔可夫模型(HMM),然后在HMM之间计算相似性度量。我们建议使用半连续HMM(SC-HMM)对序列建模。这是HMM的一种特殊类型,其在每个状态下的发射概率是共享高斯混合的。此关键约束提供了两个主要好处。首先,包含在公共高斯集中的先验信息导致对HMM参数的更准确的估计。其次,可以将两个SC-HMM之间的相似度计算简化为它们的混合权重向量之间的动态时间规整(DTW),从而显着降低了计算成本。在三个不同的数据集中进行了手写单词检索任务的实验,这三个数据集分别是内部真实手写字母的数据集,George Washington数据集和阿拉伯语手写单词的IFN / ENIT数据集。这些实验表明,所提出的相似性优于原始序列之间的传统DTW,以及优于使用常规连续HMM的基于模型的方法。我们还表明,这种准确性的提高可以与计算成本的显着降低进行权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号